On radical formula and Prufer domains

نویسندگان

  • F. Mirzaei Department of Pure‎ ‎Mathematics‎, ‎Faculty of Mathematics and Computer, Shahid Bahonar‎ ‎University‎ ‎of Kerman‎, ‎P.O. Box 76169133, Kerman‎, ‎Iran.
  • R. Nekooei Department of Pure‎ ‎Mathematics‎, ‎Faculty of Mathematics and Computer, Shahid Bahonar‎ ‎University‎ ‎of Kerman‎, ‎P.O. Box 76169133, Kerman‎, ‎Iran.
چکیده مقاله:

In this paper we characterize the radical of an arbitrary‎ ‎submodule $N$ of a finitely generated free module $F$ over a‎ ‎commutatitve ring $R$ with identity‎. ‎Also we study submodules of‎ ‎$F$ which satisfy the radical formula‎. ‎Finally we derive‎ ‎necessary and sufficient conditions for $R$ to be a‎ ‎Pr$ddot{mbox{u}}$fer domain‎, ‎in terms of the radical of a‎ ‎cyclic submodule in $Rbigoplus R$‎.‎    

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on radical formula and prufer domains

in this paper we characterize the radical of an arbitrary‎ ‎submodule $n$ of a finitely generated free module $f$ over a‎ ‎commutatitve ring $r$ with identity‎. ‎also we study submodules of‎ ‎$f$ which satisfy the radical formula‎. ‎finally we derive‎ ‎necessary and sufficient conditions for $r$ to be a‎ ‎pr$ddot{mbox{u}}$fer domain‎, ‎in terms of the radical of a‎ ‎cyclic submodule in $rbigopl...

متن کامل

Semistar dimension of polynomial rings and Prufer-like domains

Let $D$ be an integral domain and $star$ a semistar operation stable and of finite type on it. We define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong S-domains. As an application, we give new characterizations of $star$-quasi-Pr"{u}fer domains and UM$t$ domains in terms of dimension inequal...

متن کامل

semistar dimension of polynomial rings and prufer-like domains

let $d$ be an integral domain and $star$ a semistar operation stable and of finite type on it. we define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong s-domains. as an application, we give new characterizations of $star$-quasi-pr"{u}fer domains and um$t$ domains in terms of dimension ine...

متن کامل

AN INTEGRAL FORMULA ON SUBMANIFOLDS OF DOMAINS OF Cn

A Bochner-Martinelli-Koppelman type integral formula on submanifolds of pseudoconvex domains in C' is derived ; the result gives, in particular, integral formulas on Stein manifolds. The method of integral representations in several complex variables has been proved to be quite efficient in constructing holomorph_ic functions and more general analytic objects (differential forms solving the á-e...

متن کامل

A Note on the Rellich Formula in Lipschitz Domains

Let L be a symmetric second order uniformly elliptic operator in divergence form acting in a bounded Lipschitz domain Ω of RN and having Lipschitz coefficients in Ω. It is shown that the Rellich formula with respect to Ω and L extends to all functions in the domain D = {u ∈ H1 0 (Ω); L(u) ∈ L2(Ω)} of L. This answers a question of A. Chäıra and G. Lebeau.

متن کامل

Network (Tree) Topology Inference Based on Prufer Sequence

Network topology discovery is the basis for any network management application. The problem of estimating internal structure and link-level performance from end-to-end measurements is known as network tomography. This paper proposes a novel approach to discover network characteristics, in particular, tree topology from end-to-end path metrics between OD (Origin – Destination) pairs. The approac...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 42  شماره 3

صفحات  555- 563

تاریخ انتشار 2016-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023